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SUMMARY 
A computationally efficient overlap domain decomposition 
method (ODD) for modeling wave propagation in large 
domains is presented. The ODD method divides a large 
domain into several small overlapping subdomains. The 
method allows the exchange of waves between the 
subdomains through the overlapping regions without the need 
for any internal interface connecting conditions. For each 
subdomain, calculations are performed independently. Thus, 
it is possible to use different numerical algorithms in each 
subdomain. The method not only saves computing time, but 
also gives nearly the same accuracy as conventional methods. 
This paper describes the ODD ~go~#rn when wave 
propagation in the subdomains are computed “sing the finite 
difference and the pseudospectral methods. An example of 
the method for a two-dimensional domain divided into 25 
subdomains demonstrates the computing efftciency and 
flexibility of the ODD method. 

INTRODUCTION 
Recent work has shown that significant advantages can he 
obtained by “sing domain d~co~~sition methods to 
numerically simulate wave propagation. Domain 
decomposition methods are suitable for parallel computing 
and, in addition, allow different numerical methods to be 
coupled together. To date, mat of these approaches have 
utilized non-overlapping subdomains (Tessmer, et al., 1992; 
Car&one, 1991; Faccioli et al., 1996). A potential limitation 
of non-overlapping methods are the need for interface 
conditions at the (artificial) subdomain boundaries. Overlap 
domain decomposition (ODD) methods for parabolic 
equations have been proposed by Kuznetsov (1988) and Chen 
and Lazarov (1994) for finite element and finite difference 
methods. Liao and McMechan (1993) applied ODD to 
Fourier pseudospectral method for viswacolrstic modeling. 
Israeli et al. (1994) develped ODD methods with local 
Fourier basis for parabolic problems. 

We present a noniterative overlap domain decomposition 
method for wave propagation problems based on Huygen’s 
Principle. A large domain is split into several small 
overlapping subdomains. Waves are passed from one 
subdomain t” adjacent subdomains by the overlap regions. 
The wavefield is independently calc”lated in each subdomain 
by “sing a noniterative explicit algari~. The wavefield in 
the whole domain is obtained from the lwal solutions in the 
subdomains. Different subdomains can adopt different 
methods such as finite difference, p~d”s~tr~, and other 
methods. 

The advantages of this ODD method are: (1) parallel 
computing techniques can be easily applied since each 
subdomain is computed independently of its neighbors; (2) 
different subdomai~ can “se different methods; (3) 
computing time and memory can be reduced by decreasing 
the computing domain size and by hx”ing-off the 
calculations in the subdomains which do not have wave 
activity. a 

The ODD methods is described for a one-dimensional (ID) 
medium and implemented for finite difference (FD), 
pseudospectral (PS) and mixed FD-PS methods. Examples of 
method are give” for both I-D and 2-D cases. 

ODD METHOD FOR 1-D PROBLEMS 
The ODD method is described schematically in Fig. 1 for 
one dimensional wave propagation. The method can be 
described by the foliowing steps: 

Step 1. A Iarge domain Q [a, e] containing a wavefreldf(x,n) 
is split into two subdomains al [a, d] with the function 
/7&n) and QZ [b, e] with the futctionfl(x,n) at time step n. 

fi(.,n) =f&n) XE [& d] in nl 

J&n) = f&n) XE [b, e] in Rz 
Subdomains 01 and R2 have a common region Ro [b, d] 
from the original domain &2 which is called the over& 
region. Both subdomains carry a c”mm”” pat of the wave. 
At the fame time, the domain splitting introduces two 
artificial boundaries in the overlap region Ro b, d] at p&t d 
for Rl and at point b for n. 

Step 2. The soluti~ at a time step “+I in al and R2 csm be 
calculated independently in Rl and Q2. The overlap region 
Ro [b, d] belongs to both subdomains and the wavefield in 
Ro is independ~tly calculated twice. Although the artificial 
boundaries generate reflected waves, according to Huygen’s 
Principle, during the small time step dr the reflected waves 
should only affect a small area of the dimension 
&=veiocify*dt “ear the artificial boundaries. If the 1e”gth of 
the overlap region 00 is chosen longer than Zdx, then the 
reflected waves only OCCUI within the half overlap regions 
002 [c, d] in Ql and 001 [b, c] in a2 near the boundaries. 
The wavefield is ““t affected within the half overlap regions 
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Qol [b, c] in RI and f202 [c, d] in LX2 by these altiticial 
reflections. 

Pfx, n+O in [=z dl 

e 
method 

Step 3. Take the wavefield from the region [a, c] in RI and 
the region [c, e] in CZ2 to form the whole domain wavefield. 

The reflected waves from the artificial boundaries are 
eliminated by only taking the ~nl~butions from the 
respective solutions corresponding to the half of the overlap 
region within each subdomain. The choice of size of the 
overlap region depends on the numerical method used for 
wave propagation. 

ODD for 1-D finite difference (FD) method 
The I-D fmite difference method can be directly 
implemented into the ODD method. Starting with the I-D 
wave equation for a medium with constant density p, 

1 &(x,t) 6%(x t) 

~-=-SF c A2 
(1) 

_. -.. 
where u is the pressure and c is velocity, the explicit finite 
difference scheme for fourth-order space and second-order 
time accuracy is, 

To apply the ODD method to Eq. (2), the domain R is 
divided into two subdomains C21 and R2 (Fig. 2). The 
amount of overlap between these two subdomains can be 
determined as follows. The grid points , m-2, m-l, m 
belong to al and the grid points m+l, m+2, m+3, belong 

to 02. Assume that the pressures u(xi, t,) and u(x,,r,., j at 

time step n-l and n are known values. In order to get 
u(x,,r,,) in Ri, two previous time step values are needed 

from the grid points m-2 through m+2. If RI is overlapped to 
cover, the grid points m+l and m+2, then u(x,,r,,)can be 

solved within RI. 

x: m-2 m-l m m+l m+2 m+3... * 

t: n-1 

t: n 

t: n+t 
“,*A ” 

4LL,)= c Ca,u(x,,t,) a2 
i-m-2,-n-, 

x: m-2 m-l m m+l m+2m+3 _._ 

Fig. 

The grid points m+l and m+2 which originally only belonged 
to 02 now ai50 belong to CU. That is, these points form the 

overlap region. u(x,,,,t,+,) can be calculated from Rl just 

as in the standard FD. Similarly, u(x,+,,t,,,) can be 

calculated at the grid point m+l in 02 using the values from 
grid points m-i and x11+3. The total overlap region now spans 
the grid points from m-l through m+2. As can be seen in this 
analysis, the overiap region only needs four grid points (Fig. 
2) to get exactly the same results as the standard FD method 
applied to total domain CL More grid points in the overlap 
region would give same results. 

It should be noted that the results at grid points m+l, m+2 in 
Ql and m-l, m in C?l near the artificial boundaries are not 
used and only the uncontaminated results on the h&de region 
are used to form the solution at time step n+l; Therefore, the 
artificial boundaries have no adverse effects in the ODD 
method. 

ODD for 1-D Fourier pseudospectral (PS) method 
The Fourier PS method has been successfully developed in 
recent years for acoustic and elastic wave propagation 
(Gazdag, 1981; Kosloff and Baysal, 1982; Kosloff et al., 
1990; Furumum and Takenaka 1995). The ODD method can 
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also be applied to the Fourier PS method. Tbe PS method 
solution of Eq. (I) is 

where k, = zdl(N *AT) ,AT = x, -x-.~ and the $k,,t,) 

are the Fourier transform of u(x,,f) 

Two problems which arise when applying the ODD method 
developed in the precious section for the standard FD method 
to Eq. (3) are the need to known the pressure II at all the grid 
points of the previous time step and the wraparound which 
occurs at boundaries. Both these pmblems can circumvented 
by applying a taper to the pressure field at the boundaries of 
each subdomain ( Liao and McMechen, 1993). By tapering 
the pressure field to zero near the boundaries of all the 
subdomains, Fourier wraparound contributions are zero and 
the transfer of artificial waves is eliminated. 

ODD for I-D mixed methods 
Because of the independence of the computing algorithm 
used in subdomains of the ODD method, the FD and PS 
methods can be easily coupled tog&a In order to get 
smooth solutions across the s&domains, the different 
methods should have approximately the same accuracy. 

ODD METHOD FOR 2-D PROBLEMS 
The I-D ODD methodology can be directly applied to 2-D 
problems by overlap&win two dimensions fFie. 3). 

Fig. 3 

The following table gives the minimum numbers of overlap 
grids for FD methods depending on their equations and 
approximations for different problems. 

/,, 

For the Fourier pseudospectrai method, the width of overlap 
regions should be about one wavelength. 

EXAMPLES 
The finite difference method and pseudospa& method have 
been widely studied (Alford et al., 1974, Kelly et al., 1976, 
Dablain 1986, Gazdag, 1981, Kosloff and Baysal, 1982; 
Fomberg, 1987, 1996; Kosloff et al., IWO). The solutions 
obtained by using ODD FD and PS methods are compared 
with the results by using standard FD and PS methods. 

The physical model for the 1-D comparative study is 
illustrated in Fig. 4. A Ricker wave with the central 
frequency of 25 Hz and wavelength of 120 m is used as the 
source wavelet The total model is 2560 m long. The velocity 
is 3000 mis. The distance between the source and receiver is 
2200 m (apprax~mately 18 wavelengths). 

R 
Overlap area Overlap area 

I % -?P I.:.1 I.::/ * I 

I- 22oRn 
cl3 

Fig. 4 I-D physical model for ODD tests 

The standard 4* order FD (FD4), PS, ODD PS, ODD FD4, 
and mixed ODD PS-FD4 (PS in R, FD in RI and Q2) 
methods are applied to the model. The ODD methods oniy 
calcuiate the subdomains with wave energy. 1 

The waveforms from different methods are showed in Fig. 5. 
The results match very well. The relative differences are less 
than 0.02% between the ODD and standard methods. 

Fig. 5 Waveforms for 1-D model using different methods 

Fig. 6 

The 2-D acwstic model and a snapshot of acoustic 
wavefield calculated at time 0.4 set with the ODD PS-FD4 
method (25 s~~omai~) are shown in Fig. 6. 



The waveforms calculated by different methods for the 2-D 
acoustic model are showed in Fig. 7. They ail match very 
well. The relative differences are less than 0.1% between the 
ODD and standard methods. However, the ODD FD4 method 
only takes about the half computing time of the standard FD4 
method and ODD PS method takes one third of the 
computing time of the standard PS method. 

Fig. 8 shows the elastic model and a snapshot at time 0.4 set 
of the vertical component of displacement calculated from 
the ODD PS-FD4 (25 subdomains) method with a 
horizontally polarized source. 

Fiig. 8 Horizontal displacements calculated by the ODD method 

CONCLUSION 
This paper presents a computationally effscient method for 
simulating waves in large domains. The method uses an 
overlapping domain decomposition to divide a large 
computational domain into a series of smaller subdomains. 
Different numerical algorithms for computing wave 
propagation can be independently used in each subdomain. 
The method not only saves computing time by tnming off 
computation in inactive subdomains but also gives the almost 
same accuracy as standard methods. The method is based on 
simple physics and can be easily impIement~. This method 
has been successfully applied to the finite difference method 
and pseudospectral method and a combination of these 
methods for acoustic and elastic problems. Future work will 
apply this method to three dimensional problems. 
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